skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yao, Zhenxing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In geophysical applications, solutions to ill‐posed inverse problems Ax=b are often obtained by analyzing the trade‐off between data residue ‖Ax−b‖2 and model norm ‖x‖2. In this study, we show that the traditional L‐curve analysis does not lead to solutions closest to the true models because the maximum curvature (or the corner of the L‐curve) depends on the relative scaling between data residue and model norm. A Bayes approach based on empirical risk function minimization using training datasets may be designed to find a statistically optimal solution, but its success depends on the true realization of the model. To overcome this limitation, we construct training models using eigenvectors of matrix ATA as well as spectral coefficients calculated from the correlation between observations and eigenvector projected data. This approach accounts for data noise level but does not require it as a priori knowledge. Using global tomography as an example, we show that the solutions are closest to true models. 
    more » « less